Checkpoint Signaling, Base Excision Repair, and PARP Promote Survival of Colon Cancer Cells Treated with 5-Fluorodeoxyuridine but Not 5-Fluorouracil
نویسندگان
چکیده
The fluoropyrimidines 5-fluorouracil (5-FU) and FdUrd (5-fluorodeoxyuridine; floxuridine) are the backbone of chemotherapy regimens for colon cancer and other tumors. Despite their widespread use, it remains unclear how these agents kill tumor cells. Here, we have analyzed the checkpoint and DNA repair pathways that affect colon tumor responses to 5-FU and FdUrd. These studies demonstrate that both FdUrd and 5-FU activate the ATR and ATM checkpoint signaling pathways, indicating that they cause genotoxic damage. Notably, however, depletion of ATM or ATR does not sensitize colon cancer cells to 5-FU, whereas these checkpoint pathways promote the survival of cells treated with FdUrd, suggesting that FdUrd exerts cytotoxicity by disrupting DNA replication and/or inducing DNA damage, whereas 5-FU does not. We also found that disabling the base excision (BER) repair pathway by depleting XRCC1 or APE1 sensitized colon cancer cells to FdUrd but not 5-FU. Consistent with a role for the BER pathway, we show that small molecule poly(ADP-ribose) polymerase 1/2 (PARP) inhibitors, AZD2281 and ABT-888, remarkably sensitized both mismatch repair (MMR)-proficient and -deficient colon cancer cell lines to FdUrd but not to 5-FU. Taken together, these studies demonstrate that the roles of genotoxin-induced checkpoint signaling and DNA repair differ significantly for these agents and also suggest a novel approach to colon cancer therapy in which FdUrd is combined with a small molecule PARP inhibitor.
منابع مشابه
Poly(ADP-Ribose) polymerase inhibition synergizes with 5-fluorodeoxyuridine but not 5-fluorouracil in ovarian cancer cells.
5-Fluorouracil (5-FU) and 5-fluorodeoxyuridine (FdUrd, floxuridine) have activity in multiple tumors, and both agents undergo intracellular processing to active metabolites that disrupt RNA and DNA metabolism. These agents cause imbalances in deoxynucleotide triphosphate levels and the accumulation of uracil and 5-FU in the genome, events that activate the ATR- and ATM-dependent checkpoint sign...
متن کاملIdentification of DNA repair pathways that affect the survival of ovarian cancer cells treated with a poly(ADP-ribose) polymerase inhibitor in a novel drug combination.
Floxuridine (5-fluorodeoxyuridine, FdUrd), a U.S. Food and Drug Administration-approved drug and metabolite of 5-fluorouracil, causes DNA damage that is repaired by base excision repair (BER). Thus, poly(ADP-ribose) polymerase (PARP) inhibitors, which disrupt BER, markedly sensitize ovarian cancer cells to FdUrd, suggesting that this combination may have activity in this disease. It remains unc...
متن کاملGenomically Incorporated 5-Fluorouracil that Escapes UNG-Initiated Base Excision Repair Blocks DNA Replication and Activates Homologous Recombination.
5-Fluorouracil (5-FU) and its metabolite 5-fluorodeoxyuridine (FdUrd, floxuridine) are chemotherapy agents that are converted to 5-fluorodeoxyuridine monophosphate (FdUMP) and 5-fluorodeoxyuridine triphosphate (FdUTP). FdUMP inhibits thymidylate synthase and causes the accumulation of uracil in the genome, whereas FdUTP is incorporated by DNA polymerases as 5-FU in the genome; however, it remai...
متن کاملIncreased PARP-1 association with DNA in alkylation damaged, PARP-inhibited mouse fibroblasts.
Treatment of base excision repair-proficient mouse fibroblasts with the DNA alkylating agent methyl methanesulfonate (MMS) and a small molecule inhibitor of PARP-1 results in a striking cell killing phenotype, as previously reported. Earlier studies showed that the mechanism of cell death is apoptosis and requires DNA replication, expression of PARP-1, and an intact S-phase checkpoint cell sign...
متن کاملERCC1 and the Prognosis for Patients With Colon Cancer Receiving Oxaliplatin-Based Adjuvant Chemotherapy
Oxaliplatin is known to be a platinum-based chemotherapeutic agent that carries a 1, 2-diamino-cyclohexane ring. This drug has shown in vitro and in vivo antitumor activities in patients with colorectal cancer (CRC) [1]. The addition of oxaliplatin to 5FU (FOLFOX regimen) was shown to improve the adjuvant treatment of stage-III colon cancer by reducing the risk of recurrence and increasing over...
متن کامل